Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish
نویسندگان
چکیده
BACKGROUND Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE) can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO) zebrafish. METHODS Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily) for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily). Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. RESULTS Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl), ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain), and PPARA (peroxisome proliferator-activated receptor alpha). GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b) which inhibits leptin signaling. CONCLUSIONS The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.
منابع مشابه
Body Fat Accumulation in Zebrafish Is Induced by a Diet Rich in Fat and Reduced by Supplementation with Green Tea Extract
Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat...
متن کاملThe Effect of Aerobic Training Combined and Green tea (Camellia sinensis L.) Extract Consumption on Blood Glucose and Lipid Profile in Streptozotocin Induced Diabetic Rats
Background: Type 2 diabetes is a global health problem and a major cause of illness. Exercise, diet and medication are the three pillars in the treatment of type 2 diabetes. Objective: The aim of the present study was to investigate the effect of aerobic training combined with green tea hydroalcoholic extract consumption on blood glucose and lipid profile on diabetic rats. Methods: Diabetes ...
متن کاملFermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice.
Obesity is caused by an imbalance between caloric intake and energy expenditure and accumulation of excess lipids in adipose tissues. Recent studies have demonstrated that green tea and its processed products (e.g., oolong and black tea) are introduced to exert beneficial effects on lipid metabolism. Here, we propose that fermented green tea (FGT) extract, as a novel processed green tea, exhibi...
متن کاملGreen Tea Extract Containing a Highly Absorbent Catechin Prevents Diet-Induced Lipid Metabolism Disorder
We investigated the effects of extracts of Benifuuki (a tea cultivar that contains methylated catechins such as epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me)) in mice fed a high-fat/high-sucrose (HF/HS) diet. This tea cultivar was then compared with an extract of Yabukita (a popular tea cultivar that lacks methylated catechins). For 6 weeks, C57BL/6J mice were fed either HF/HS diet with ...
متن کاملOriganum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes
The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally ...
متن کامل